
AD-A271 852
NASA Contractor Report 191515 i1lIlIII !II IIIiIIl
ICASE Report No. 93-55

ICASE U
TOLLMIEN-SCHLICHTING/VORTEX INTERACTIONS IN
COMPRESSIBLE BOUNDARY LAYER FLOWS

Nicholas D. Blackaby

NASA Contract No. NAS 1-19480
August 1993

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

~ 93-25866A w I -- - -- mbf 11011111,111111U 11 11[111 11 P1i 11l Ii I~

National Aeronautics and
Space Administration

Langley Research Center t 'A

Hampton, Virginia 23681-0001 .



ICASE Fluid Mechanics

Due to increasing research being conducted at ICASE in the field of fluid mechanics,

future ICASE reports in this area of research will be printed with a green cover. Applied
and numerical mathematics reports will have the familiar blue cover, while computer science

reports will have yellow covers. In all other aspects the reports will remain the same; in

particular, they will continue to be submitted to the appropriate journals or conferences for

formal publication.

koceE3SIOn FOP

D e *.o o,,t .. -- -

• . .



TOLLMIEN-SCHLICHTING/VORTEX INTERACTIONS IN
COMPRESSIBLE BOUNDARY LAYER FLOWS

Nicholas D. Blackaby1

Department of Mathematics

University of Manchester

Manchester, M13 9PL

United Kingdom

ABSTRACT

The weakly nonlinear interaction of oblique Tollmien-Schlichting waves and longitudinal

vortices in compressible, high Reynolds number, boundary-layer flow over a flat plate is con-

sidered for all ranges of the Mach number. The interaction equations comprise of equations

for the vortex whklih is iihdirectly forced by the waves via a boundary condition, whereas

a vortex term appears in the amplitude equation for the wave pressure. The downstream
solution properties of interaction equations are found to depend on the sign of an interaction
coefficient. Compressibility is found to have a significant effect on the interaction properties;

principally through its impact on the waves and their governing mechanism, the triple-deck

structure. It is found that, in general, the flow quantities will grow slowly with increasing
downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt, finite-distance

'break-ups'.

'This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1. INTRODUCTION

The nonlinear interaction between two oblique three-dimensional Tollmien-Schlichting

(TS) waves and their induced streamnwise (longitudinal)- vortex flow is considered theoret-

ically for a compressible boundary-layer flow; this study is an extension of the paper by

Hall & Smith (1989) who considered an incompressible boundary-layer flow. The same

theory applies to destal)ilisation of an incident vortex motion by sub-harmonic TS waves,

followed by interaction. The interaction is considered for all ranges of the Mach number

in order to investigate the effect of flow-compressibility.

The motivation for such a study is essentially the same as expressed by Hall & Smith

in the introduction to their paper; namely that often in experimental studies of laminar-

to-turbulent transition on a flat plate (eg. Aihara & Koyama, 1981; Aihara et al, 1985),

there appear to be longitudinal vortices co-existing, and interacting, with the viscous TS

modes. As there is no concave curvature of the surface, these longitudinal vortices are

not Taylor-G6rtler vortices driven by surface-curvature (see Hall, 1982a,b and subsequent

studies); instead one could postulate that they are in fact being driven by, and/or inter-

acting with TS modes. The reader is referred to the paper by Hall & Smith (1989) for a

fuller account of relevant experimental findings, as well as supporting computational work

(see, for example, Spalart & Yang, 1986). These experimental studies are all for incom-

pressible flow; the author is unaware of any experimental work specifically rel'evant to this

compressible study. We note in passing that, for compressible flow over a heated plate,

buoyancy-driven longitudinal vortices may also be possible (see Hall & Morris, 1992).

Recently, the origin of streamwise vortices in a turbulent boundary layer has been

investigated theoretically by Jang et al (1986). The Reynolds number is taken to be

finite and their formulation is of the Orr-Sommerfeld-type. They show that two oblique

travelling waves can combine nonlinearly to produce a stationary, streamwise vortex -

this is essentially the theoretical idea later used by Hall & Smith in their independent work.

However the latter's approach, that adopted in this paper, takes advantage of the feature

that the Reynolds numbers of interest in reality are large and so the Reynolds number

is taken as a large parameter throughout. The nonlinear interaction is powerful, starting
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at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale

structure for the induced vortex, after wh;cli strong nonlinear amplification can occur.

Non-parallelisin is accommodated within the scales involved.

The nonlinear interaction is governed by a partial-differential system for the vortex

flow coupled with an ordinary-differential equation for the TS-waves' pressure. The solu-

tion of this coupled systeln depends crucially upon so-called interaction coefficients which

are functions of the Mach number; additionally, the TS waves are significantly affected by

the inclusion of compressibility. It is found that the interaction coefficients, for subsonic

flow, do not differ significantly in nature from the incompressible ones, but as the flow

becomes supersonic the restriction (for high Reynolds numbers) that the TS waves must

be directed outside the local Mach-wave cone (Ryzhov, 1984; Zhuk & Ryzhov, 1981) ex-

cludes a particular flow solution which is only possible for less oblique modes. The flow

properties point to the second stages of interaction associated with higher amplitudes.

It is found that the present formulation breaks down as the Mach number becomes

large: for then, even when the presence of shock/boundary layer interaction is neglected,

the viscous sublayers coalesce to form a single boundary-layer. The structure applicable

in this hypersonic limit has been considered by Smith (1989) and Blackaby (1991).

The theoretical idea is basically that, if two low-amplitude TS waves are present,

proportional to E1,2  exp[i(ovX± AZ-Qi )] say; then nonlinear inertial effects produce the

combination Ei Eý- = exp[i/3], = E 3 say, at second order, among other contributions, i.e.

a standing-wave or longitudinal-vortex flow is induced. Here a, #3 and 01 are real-valued

scaled wavenumbers and frequency, whilst X, Z and i are scaled length- and time-scales

(see later). Equally, the combination of the vortex and one TS wave provokes the other

TS wave.

Since the Reynolds number is assumed to be large, the TS waves are supported by the

triple-deck structure (Smith, 1979,89); however an extra sub-boundary layer and a further

streamiwise length-scale are necessary to capture their interaction with the longitudinal

vortices. The present vortex/wave interaction mechanism is very similar to that of Hall

&Smith (1989); the difference is caused by an error in the latter, uncovered by Smith

o, Blennerhassett (1992). The amended interaction still has the induced vortices lyvii
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at the top of the lower deck but now the forcing from the TS waves is solely from an

inner boundary condition. The wall-shear of the induced vortices modifies the wall-shear

of the basic flow at the same order as the latter's leading-order nonparallel correction.

These corrections to the wall shear force secondary TS waves in the lower-deck, whilst the

amplitude of the primary TS waves here is governed by an amplitude equation involving

these corrections to the wall shear. The behaviour of the primary TS quantities at the

top of the lower deck then leads to longitudinal-vortex activity being forced there. Thus

the system is truly interactive: the longitudinal vortices are driven by the TS waves, the

amplitude of which is determined by an amplitude equation involving a vortex-term.

We consider the interaction for the case of compressible laminar flow over a semi-

infinite plate. In the next section the underlying boundary-layer flow is outlined and

the triple-deck structure, for such compressible flows, is reviewed. In §3 the interaction

equations are derived, and a few special limiting cases of these equations are considered.

In §4 numerical results are reported and in the last section some conclusions are drawn.

2. FORMULATION

We consider the boundary layer due to high-speed uniform flow of a compressible

over a flat plate. Suppose that L is the distance from the leading edge, and uýo, a<, p•

and pý., are the velocity, speed of sound, density and shear viscosity of the free stream

flow, then we assume that the Reynolds number, Re = pýuý.L/jis., is large. This is not

unreasonable as one is already assuming the presence of a boundary layer. The second

important parameter is the Mach number, M. = u*/a*, which we take to be 0(1) for

the time being.

A nondimensionalisation based on coordinates Lx (where x is in the direction of flow

and y is normal to plate), velocities u'_u, time Lt/uýo, pressure pouoop, density p*,p,

temperature T•T and shear viscosity i* L is adopted, where the subscript co denotes the

value of the quantity in the free-stream. We assume that the fluid's viscosity and tem-

perature are related by Sutherland's formula. Full details of the Navier-Stokes equations

equations for compressible flow; the resulting boundary-layer equations and associated
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similarity solutions can be found in several books and articles (eg. Stewartson, 1964).

Note that only the 'wall-values' of the steady boundary-layer flow solution occur within

scales considered in this paper; however, these quantities depend on the choice of viscosity-

temperature relation as well as other factors such as whether the plate is cooled and the

nature of the external pressure gradient.

2.1 The 3-D compressible triple-deck equations.

The underlying structure, of the vortex-wave interaction to be considered later, is that

of the three-dimensional, compressible Tolhnien-Schlichting (TS) waves at large values

of the Reynolds number, namely the three-dimensional 'compressible triple-deck'. This

structure has been studied by, in particular, Zhuk & Ryzhov (1981), Ryzhov (1984) and

Smith (1989); the two-dimensional, compressible triple-deck theory was first considered

by Stewartson & Williams (1969). Recently, Cowley & Hall (1990) and Duck & Hall (1990)

have shown that the theory can be adapted to include the effects of a shock for flow over

a wedge, and cylindrical geometry, respectively; whilst Seddougui, Bowles & Smith (1991)

have considered the effects of wall-cooling. For definiteness, we assume that the flow is

supersonic (Mo, > 1) during the formulation of the interaction equations; the subsonic

and other cases follow very similarly and in §4 results are also presented for these cases.

In the following scalings, the Reynolds number is assumed to be large whilst the other

factors are taken be be 0(1). The latter are introduced to normalise the resulting governing

equations as far as possible; however, the Mach number still remains in the upper-deck's

pressure-disturbance equation and hence it appears in the TS-eigenrelation.

The streamwise, spanwise length-scales and the time-scale, for Mo > 1, are

3 1 3 1 3
(x - xo ,z - zo) = Re-,K 1 (X ,Z), t = Re- AW 11 (MW 0

5 1 7 3

K, = A,'itwi T,•(M2 1)-; (2.1a - c)

here (x0 , z0 ) corresponds to the location of the initial disturbance of the laminar base-flow.

In the viscous sublayer, or lower (leck,

.5 .31
y - A,,,- 4 It T,,J,(M2 - 1)-gy,
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p-p = Re-Als,,,T,,(M - 1)-¼P. (2.2a - e)

The resulting lower deck equations are

Ux -: "y + Wz = 0,

Ui + UUx + VUy + WUz = -Px + Uyy,

Wt + UWx + VWy + WWz = -Pz + WYY,

Py = O, (2.3a - d)

to be solved subject to

U=V=W=0, on Y=0; U--.(Y+A(X,Z,i)), as Y.-oo. (2.3e-f)

The main deck has

y = Re- V9, (2.4)

and merely transmits the small displacement effect, A, across the boundary layer as well

as smoothing out an induced spanwise velocity. The displacement, A, is related to the

pressure, P, via a pressure-displacement law stemming from matching solutions across the

three decks (see Smith, 1989).

The upper deck occurs where

y = Re KI(M2 - 1)-'; (2.5)

note that the Mach number can be scaled out of all but the upper deck equations.

2.2 Linear Tollmien-Schlichting modes.

The eigenrelation, for linear supersonic TS-modes, is easily derived using the triple-

deck scales and equations discussed in the previous subsection. It can be written in the

form ' 1 2 2'221 1
()()=(Ai/±)(-o){ 1 a}7, (2.6a)

5 4(M 1)
•k5



where Ai signifies the Airy function,

PC I

K= Ai(q)dq and ýo =-~a.(2.6b, c)

Here a, j3/ 2 and Q are the scaled wavenumbers and frequency of the lnode. The vortex-

wave interaction to b)e described concerns only neutral modes, so a, /I and Q are all real.

In Figure 1 we p)resent the 'neutral' solutions of the eigenrelation (2.6a), and its

subsonic countelpart, for a few (illustrative) choices of the Mach number A•,,. Here (and

hereinafter) the 'wave [obliqueness] angle' is defined by

0 < 0 = tan-'(/0/2a) < 90'. (2.7a)

We see for subsonic values of the Mach number (M,, < 1) that neutral modes are possible

for all wave-angles. However, for increasing supersonic Mach number values (Moo > 1)

the solution properties start to differ noticeably, with only an ever decreasing range of very

oblique TS-wave propagation angles, 0, being possible. Thus the restriction (2.7a), which

can be re-written

8 _> tan-' [(M - 2)½], (2.7b)

is clearly evident in this figure. We shall see later, once the interaction has been formulated

and numerical values have been calculated for the important interaction coefficients, that

this restriction proves to be a more significant 'compressibility-effect' on the interaction

than the 'direct' effect due to the Mach number appearing in the interaction coefficients.

Smith (1989) gives a comprehensive account of the consequences of the eigenrelation

(2.6a) on the stability of the flow to linear TS-modes (note the factor of 2 difference between

the definition of 13 here and that used by Smith, 1989 and Blackaby, 1991) Our concern

in this paper is with a vortex-wave interaction based on these length- and time-scales. In

the next subsection we deduce the size of additional x- and y- scales necessary to capture

this interaction.
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2.3 The interaction scales.

In deriving the interaction scales, the same argument as Hall & Smith (1989) is fol-

lowed but based on the compressible triple-deck scales quoted in §2.1. Howev-r, we take

the coupled lower- and upper-deck equations as our starting point, rather than returning

to the compressible Navier -Stokes equations; this approach appears simpler.

We know that TS-waves are governed by the triple-deck structure, and in particular

by the unsteady interactive boundary-layer equations holding in the lower-deck coupled

with the upper-deck equations via a pressure-displacement law. If the three-dimensional

(3D) TS-wave amplitudees are comparatively small, say of order h << 1 relative to fully

nonlinear sizes, then nonlinear inertial effects force a vortex motion at relative order h2:

the TS-modes are taken to be proportional to

El = exp[i(cX + -Z - Qi)], E2 = exp[i(aX - -Z - Qit)] (2.8a, b)
2 2

and we see that combinations yield, in particular, induced longitudinal-vortex terms pro-

portional to

E3 = exp[i(/3Z)J, (2.8c)

having only spanwise dependence.

It can be easily shown that spanwise inertial effects (such as the 'UWx' term of the z-

momentum equation) decay slowly like 1/Y 2 resulting in the spanwise velocity component

of the induced vortex to grow logarithmically like lnY (Hall & Smith, 1984,89). Hall

&- Smith (1989) introduced the concept of a new sub-layer ('the buffer layer') situated

within, and at the top of, the lower-deck, along with a longer length-scale (for amplitude

modulation) to damlpen down this logarithmic growth. They showed that the main vortex

activity was confined to this region.

Before deriving sizes for the modulation length-scale and the thickness of the buffer-

layer, we briefly mention the link between the r-scales present and nonparallel effects. The

tril)le-deck is a local structure located at nondimensionalised distance x = xo from the
3

leading edge. It is short, its length being O(Rc -9 K1 ) compared to the 0(1) development

of the underlying boundary layer, and all the X-dependence of the TS -modes is taken to
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be ;it the El and E2 factors. The lomdulation of the modes is assulneld to bI) on a longer

.r-sCale, leaving the tigenrelation (2.6a) inaffected. We define this ino(di!ation x-scale,

X say. by
3 3

x1 - to = 2X + Rf _K 1 X, Rg~K 1 K< oS2 <- 1 (2.9a')

where ýý i. to b~e determined. Thus we have multiple -scales in x, formally we should make

the replacclement
3

a 0 + R K (2 .9b)

ax__ Ox2 Oa

ill the triple heck equations (2.3).

At leading order the wall shear A,,, - A,,(x) iv constant ýwith respect to the X- and

A-- scales) but here we wish to balance the next order term into the interaction equations;

in fact, for later convenience we have scaleo the leading order value, Aw(xo ), out of the

triple -deck equations. As a Taylor cypansion about the local station x = x0,

A,,,(x) = A,(xo)(1 + b2XAb(xo) + (2.10)

here Ab = A•' dAw /dx is 0(1) and represents the first influence of nonparallelism (stream-

wise boundary-layer growth).

In the buffer layer, where Y = 6Y say (6 >> 1), the size of the spanwise velocity

of the induced vortex in the buffer layer is 0(02 In Y). - h2 ln6, leading to an induced
3

streamwise velocity of order 62Re--•h 2 In 6, by continuity (and noting that the modulation
K1

32
- ~62 Rew h2

is on X), which alters the basic shear Aw, by a relative amount of order -R h In 6 andK•
this is the same order as the 'non-parallel' Ab-term if

62 "" 6n2 R e. 1 (2.11a)
K1 6

The X-nmodulation has been introdliced to damip the in, uced-lvortex velocity components

in the buffer layer, and this requires the inertial operator, YaO/X, to balance the viscous

one, a2 /aY 2 , i.e.
3

3., .62 •Reg (2.11b)
K1
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One further relation (betwe xi the uniknownis hi, and( 6.,) is r, ulired andI results,

from lbal'an('ilg the slower nlodilulat~on %v.,itli the nonparallel effects too (I.e. InI the x -

1l)1lW11tmlil epilatioli, balanicinig the Ab terii wvith By). yielding

3 1

62=Re 6ThKI 2 (2. 11 c)

The other two sizes 11ow follow iimmiedliately from (2.1 la-c):

1 1 /15 15\/ IRc RK 1 - and( /I (Re A - 7, K) . (2. 11W,

The logarithmic factor in (2. 1 1a~e ) is im portant (Smnith &- Blennerhass.'tt. 1992): it iis

wýronig to dismiss, it like Hall &- Smnith (1989). We note that 6 is large, whilst 1i and 62 are

simill, as re(plmre(l.

3. THE INTERACTION EQUATIONS

The inethodI of dleriving the interaction equations is identical to that used by Hall&

Smith (1989); essentially, it involves a stano~larci weakly-nonlinear triple-d~eck analysis but

slightly complicated due to (i) the wall shear being weakly z--dependlent, and (ii), tile extra

(baffer) layer. Thus here we p~resenlt only the, briefest outline of tihe dlerivationl; our mal~in

concern ill this paper b~eing tile effect of compressibility onl their solution properties. Fuller

dletails cai lbe found in Blackabv (1991) (see also Hall &- Smith, 1984,89; and Sinith., 1989).

3.1 The equations and their derivation.

The interaction equations comprise of a set of ecluations for the vortex-ternis ill tile

1)uffer-layer coupled with anl equation for the TS-wave pressures resulting from matching

tihe solutions for tile waves between tile lower-deck an~d tile uplper-(leck. Thle vortex

equations are forced by the wave via a b~oundlary condition whereas a vortex termn explic'itly

enters the wave-equation.

In the buffer- layer, the, vortex terins, il 3.ýX, f'), f73 .3 (A, f') and ?b3 3(±, f"), have the

followinlg sizes relative to time lov.,e±-deck scales (2.2)

(v, lv,)vortex = h~ ll (Re ý½i2ý 33 /Kl 6i 3 3r, ?d3 3)E 3 + c.c.: (3.1)
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liere' tjic notati 1 of Hall & Suiith (19S9) has 1 ,ei a(thered to and cc. denotes copIllleX

conjugate. These scales, together with the wall shear terin ,Y in the U expansion, lead

to tle vortex equat ions

,.T-.-.- Y-4d'Y-: X 0. (3.2a. b)

Whicli must 1 e solved subject to the boundary conditions:

61:1.(cxA ) = CC 3-g(,Yx I) =i't 13-(X, 0) = 0 and d,:33(X, 0) = -i/4K p II'

(3.2c - f)

he tre,

K = 1 - (/12/4a2) (3.3)

and/ j51I is the amplitude of the TS-waves which we choose to be of equal amplitude. Thus,

we see that the vortex equations are only forced by the TS-waves via a boundary-condition

which matches the solution in the buffer layer with that found in the lower-deck.

The desired equation for the pressure amplitude l151 of the primary TS-waves can be

derived by solving the triple-deck equations for the primary and some forced TS-waves;

after some manipulation we find that it takes the form

a lpI(X-)-y+ b AbX-lI(X)I-+ c f 3 3 V(XO)P 0 I(X)M = 0. (3.4)

This equation wa.s first derived by Hall & Smith (1989); however, here the so-called com-

patibility coefficients a, b and c are functions of the Mach number. The presence of M"

in these coefficients is one of the reasons for the solution properties for compressible flow

differing from those for the incompressible case. In fact, the for supersonic case

2rl1yDýOA 2  i [2B B 2r 1TD~oaA-5 5B7
a-= 3 -ZB I- +±--2 +1l b- 3 30

and(2iy +fr2) -c- (5B - 3/+B) (3.5a - c)

where
Ai(G0) , K(ýO) D =I K(- 2 132

""' (ýo Ai(zo)' Ai' (o)- 4
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i32_____ 2 1
B = -A2, 1 and A = (i'a) . (3.6a- f)4(ML - 1 )

The coefficients for other flows can ibe derived very sinilarly and, ill fact, numerical

results for the subsonic and inconll)ressible cases are presented in the next section. An

alternative, less physically motivated, derivation of the interaction coefficients is outlined

by Blackaby (1991) who considers a generalised TS eigenrelation. The quantitative values

of these coefficients, and their resulting effect on the interaction properties are considered

later. The (normalised) interaction coefficients

., = Real(b/a) and c2r = Real(c/a), (3.7a, b)

are crucial to the solution properties; especially the large-X behaviour.

It is possible to derive a nonlinear 'integro-differential' equation,

dlpl I I~ ~ _ C2rj32 KAi (O) Xp,12d[3,_X + (CIrAbX+ F(2  (0) (/32 ,(i4,)(X -y •!• ) !3I =1 0, (3.8)

for the pressure amplitude I from the previous equations. A similar equation has been

found by Smith & Walton (1989), in their study of vortex-wave interactions.

3.2 Possible limiting forms for large-X.

Let us consider analytically the possible flow solutions for large-X. Hall & Smith

(1989) found four such options for their system of equations; however, the necessary

amendments to their work render one of these options is no longer feasible, namely that

of exponential growth. Moreover, there is a swap in the signature required for the cru-

cial quantity KC2F for the finite-distance-blow-up and the algel)raic-growth--to-infiniity

eventualities to 1)e possible. Thus, the conclusions, drawn later, for the case of zero Mach

number are quite different from those found in Hall & Smnith (1989). In §4, numerical

solutions of the interaction equations will be presented and conil)aredl with the large-X

asynt)totic predictions that follow.
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(i) Optitn I: Fi'nit: di.*tanee: brcak up.

Hall &, Smith (1989) showwe( that a 1)ossileh. ultimate behaviour of the nonlinear

interactive flow, as X increases, was that of an algeblraic singularity arising at a finite

position, "ay as X -+ XN this option is, in fact, still possible for the corrected system

of interaction equations but with sonic changes in the details. The similarity forms they

proposed are appropriate, apart from that for the pressure. As X -4 XA the behavioilrs

for the interaction quantities must have the foirms:

- -- 5 ~- -- 5 ~

I (YO - X) P(ii), W33 (XO -

(-Yu - X-%(i), where i= Y(X 0 - X)-. (3.9a - d)

When these forms are substituted into the interaction equations, the resulting similarity

equations can l)e solved and we deduce that we require the quantity

KC2, < 0, (3.10)

for this option of finite-distance break-up to be a possible large-N state of the vortex-

wave interaction. Note the change of sign necessary for this option to be possible; this

change is due to the modifications found necessary by Smith & Blennerhassett (1992).

The next option that we consider is less 'catastrophic', as far as the laminar flow is

concerned, with the solution continuing to downstream infinity.

(ii) Option II: Algebraic response at infinity.

This option is still also possible with the corrected equations. The flow quantities

must have the following forms

I ~I ~

II '-X
6 P(ij), 1'3. X 3 W( _), X 3 j.•- / f,33), ' = YX 3, (3.11a - d)

as AX --- 00.

It is easy to show, from the integro-differential equation (3.8), that we require

Kc.2r > 0 (3.12)
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for this option to be possible; note that this is also a different result than Hall & Smith

(1989) fouind.

The third large-X option proposed by Hall & Smith (see also Smith & Walton, 1989)

is that of an exponential growth as X oc. This option is no longer possible as it relies

on a forcing term in the Za3 3-equation that is not present in the corrected equations. A

further option, mentioned by Hall & Smith, that is still feasible; is that of decoupling due

to linearisation. Here the TS pressure disturbance 1P I I becomes very small, and the vortex

flow then grows slowly on its own with downstream variable X from its initial upstream

state. However, this option is ultimately unstable to the TS-waves since the nonparallel-

growth term, proportional to Ab, will dominate the vortex skin friction ft337(X, 0).

3.3 The transonic and hypersonic limits.

There are three obvious limiting cases to consider for the value of the Mach num-

ber; below we consider the transonic and hypersonic limits, M --- 1 and M, -* OC

respectively, whilst the incompressible case M, = 0 is considered in the next section.

(i) The Mach number tending to unity.

In his study of the eigenrelation (2.6a), Smith (1989) investigated various limiting

cases, including those of M, --+ 1 and M - oc; Here the 'transonic limit' will be

considered; without loss of generality, we suppose that the flow is (just) supersonic and

define

0(M - 1)7, (3.13)

so that rh is small. Smith (1989) showed that, in this case, the TS-wave quantities behave

like
(a•,,3, Q) ,- (rh-T a -, ih -•/* rh a) .. (3.14)

Substituting these into the formula for the interaction coefficients, we find that

"(CiC2r) -' + C r, Cr - 0(1), (3.15)
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so that the' interaction scals XT,, the vortex disturibances 11 33V:'3 and the TS- pressure

almiplit ide 1j I 'I also iieed to 1)e scaled with -,:

3--* I- 37 13
(X,'Y iI: ' I3 Iil) Y'( X UhV lit i8L l it d,° ý-.I-ITý- 1f 1l K) + (3.16)

These scales and the resulting set of equations can be used to check numerical results, for

the general supersonic case, by providing a 'transonic' asymptote. We (1o not consider the

transonic limit any further here; Bowles (1990) has considered transonic boundary layer

transition but the author is unaware of any vortex-wave formulations for the transonic

regime.

(ii) The large Mach number limit.

Another limiting case that Smith (1989) went on to investigate was the so-called

hypersonic limit when M,,I >> 1; this limiting case leads to some interesting consequences

for the whole triple-deck structure. Thus it would be most instructive to consider the

same limit here, as our interaction structure is, of course, dependent to a very great extent

on the underlying triple-deck scales.

First, let us recap those results of Smith (1989) which are relevant here, before going on

to investigate the result of increasingly large Mach number on the interaction-coefficients,

equations and length-scales. For Moo >> 1 the main features revolve around the small

regime
-31

Q•/3 ) -- (M"ý' &',mZ'2/•, M'V1f) +., (3.17)

where &, ý/ and f are 0(1). Since a, /# and 9 appear in the interaction coefficients (3.7),

it is necessary to rescale the coefficients as follows:

3

(cl,c 2 ,) =M. 2 (ZIr,Z 2 ,)+".., where cl,c 22 0(1). (3.18a, b)

It also is necessary to rescale the quantities appearing in the interaction equations,

^34f M14ýM34 3/4: M20 /81 )
(X, Y, f,33 V1 ab33, 1A iI) (AU3M'4 ,v 314  , oW3, M;'JP 3 I)-

(3.18c - g)
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A set of interaction equations for this hypersonic-limiting case can be derived (Black-

aby, 1991). These appear exactly the same as the general interaction equations which

obscures the fact that the whole multi-layered boundary-layer structure is radically al-

tered as the Mach number increases. It was shown by Blackaby (1991), based on the theory
1 3

of Smith (1989), that as M,,/2 Reg, the triple-deck streamwise length-scale, R( -gKX,

rises to become 0(1) in size; implying that a normal-mode decomposition is no longer

rational because the nonparallelism of the underlying, growing boundary-layer is now a

leading-order effect. Further, in this limit it was shown that the lower-deck thickens to

coalesce with the main-deck.

This collapse of the underlying coml)ressible-triple-deck structure, as the Mach nuin-

ber increases, will obviously occur for the large Mach number behaviour of the vortex-wave

interaction being considered. However the large Mach number destiny of buffer-layer (in

particular, its thickness) and the amplitude-modulation scale remain to be established.

Intuitively, as the buffer-region is 'sandwiched' between the lower- and main-decks which

merge into a single viscous layer in this limit, we would also expect the buffer-region to

collapse into the same viscous layer. Similarly, as the modulation-scale is 'sandwiched'

between the triple-deck's streamwise length-scale (which emerges as 0(1) in this Mach

number limit) and the 0(1)-length-scale of the underlying flow, we would expect that the

modulation-scale also lengthens to that of the underlying base flow (as Mo,, / Reg). We

now show that these suspicions are correct, by formally considering the large Mach number

properties of the scales involved.

Recall that, in the streamwis, direction, we have the multiple scales,

3 1

a. -X• + 6-2-1x R RegK I Ox;

necessary to cal)ture the vortex-wave interaction. The quantities K1 and 62 are as defined

by (2.1c) and (2.11c), respectively. In the large Mach number limit, we have seen that

3 3

Oy _ Mo 4 whilst Ox _' a _.1 ,

15



so that the unscaled length-scales, L,,, and L,, say, of the TS- waves and the modulation

of the induced vortices, respectively, are

3 3 3

L,,, - Re- 8 M 7 K< 1 and L,, - 62 MO K< 1.

The Sutherland temperature-viscosity relation leads to,

15

K1 -• Miii, (3.19a)

and so
3 27 1

Lw -'. Re- 8MT, 0 (l), as M, / Reg.

As far as the amplitude-modulation scale is concerned, we find that

3 3 1 3 3 27 1
L M -1•M Re-K MI , Re-T-MT- / 0(1), as Moo / Reg. (3.19b)

Thus, as predicted earlier, this modulation scale does indeed rise to 0(1)-size in this limit

of the Mach number.

Now, let us consider the buffer-region; it lies at the top of the lower-deck, where

the lower-deck normal-variable Y = 6' and 6 is defined by (2.11d). For large Mach

numbers, we have found, (3.18d), that the buffer-region is characterised by the location

where Y7 = MZ1V Y 0(1). Thui the buffer-region lies where

Y -. 6,MOT" , Re'I-UK7Mj '!..• Re T6MooN

O(Re1g) - O(MZ), as M,, / Reg. (3.20)

Note that for large Mach number, the lower-deck variable, Y, also scales on Moo; in fact

Y ,- MA, - hence from this and (3.20) we deduce that the buffer-layer merges with the

lower-deck, which in turn coalesces with the main-deck. Thus the three sub-boundary-

layers, present for M, I- 0(1), have all merged into one single viscous layer.

Summarising, when M, -- Reg the four-layered, short-scaled structure underlying

the vortex-wave interaction collapses into the two-tiered, long structure found by Smith

(1989) and considered by Blackaby (1991).
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4 RESULTS AND DISCUSSION.

This study was motivated by the desire to find out what changes to the theory, pre-

dictions and conclusions of the original work by Hall & Smith, are brought about by the

inclusion of conipressibility-effects. However, ironically, the changes brought about by the

correction of the former turn out to be more significant. For this reason, and for later

comparison, the new results for ":icompressible flow will also be presented in §4.2. In the

following subsection, we show how the interaction equations can be 'normnalised' so that

their solution depends merely on initial conditions imposed and the sign of KC2r. Nuiner-

ical solutions of the normalised interaction equations are presented for both choices of the

sign of KC2r.

4.1 The interaction equations renormalised.

In §3.2 we considered possible limiting-forms, for solutions to the interaction equa-

tions as X --* oo, and found that the sign of the quantity KC2, was crucial in deciding

whether particular limiting forms were, in fact, possible. This suggests that the interaction

equations, (3.2,3.4), can be renormalised. This being desirable, we investigated further and

found this was, indeed, the case.

Writing

X= IclAbl-IX*, Y = IcirAbliY*, tiba = -i/KIc 3 1a W*,

IP1 II = ic 3 l-½P* and fa33T = _#2KlclAblcal-3 r (4.1a - e)

where

C3 -Kc 2 r2 /clrAbI', (4.2)

leads to the normalised system

W.*Y. - Y*W.* O, Tr.y. - Y * 7 _ = W*

and Pt-. + [sgn(c,,Ab)X* - sgn(Kc2r)r*(X*, 0)] P* = 0, (4.3a - c)
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which must be solved subject to initial conditions (at X* = 0), together with the boundary

conditions

WV*(X*,o0) = 7*(X*,o0) = r7..(X*,0)= 0 and Wj*(XVO) = P* 2(X*). (4.3d- g)

Thus, the interaction equations (and hence their solutions) are dependent only on the

initial conditions imposed; sgn(cirAb) and sgn(Kc2r). In all the numerical calculations

carried out, it was found that c1 r > 0, whilst Ab < 0 for a growing 'Blasius-similarity-

variable-tyl)e' boundary layer - apl)ropriate to the present study, if we assume that there

is no significant wall-cooling or pressure-gradient effects. We therefore set sgn(crAb) = -1

and, apart from consistent initial conditions, the only parameter remaining is sgn(Kc 2r).

Thus, with hindsight, it is not surprising that the (predicted) solution properties for, large-

X, depend crucially on the value of sgn(I'c 2 ,). Recall that earlier, in §3.2, we noted the

following predictions:

sgn(Kc2,) > 0 Algebraic response, as X -_ (4.4)

< 0 Finite-distance break-up, as X0

for the behaviour of the solutions to the interaction equations.

To check these predictions, the normalised system, (4.3), was solved numerically; for

both possible values of sgn(Kc2,), and for different (consistent) initial conditions. The

large-X (X* >> 1) properties of the solutions were found to depend solely on sgn(Kc 2,);

the initial conditions were found to affect only the initial development of the imposed

disturbances. The equations were solved by taking 'central differences' in Y* and 'forward

differences' in X* (following the method of Hall & Smith, 1989); the appropriate numerical

checks were performed.

In Figures 2a,b, we present typical results for both values of sgn(Kc2f). In both of

these computations the system was initialised at X* = -1 (upstream of the neutral TS

point) using

p*2P* = P0*, W* = P0*2 (1 + Y*2 )exp[-y*2 ], 7* = (1 - -O + Y*2 )exp[-Y* 2 ], (4.5a - c)
2

with P0* = 0.1. Note that this initial state, which is consistent with the interaction

equations plus boundary conditions, corresponds to a 'mixed' wave/vortex state. Moreover,

18



we see from the 'forcing' 1)ouindary condition (eg. (4.3g)) that admissible initial states

cannot consist of just TS waves alone; the longitudinal vortices must initially be prte'nit.

It appears to the author that the Piitial states used by Hall & Smith (1989) (see their section

5; particularly figures 2--5) are inconsistent with their system of interaction -equations plus

lboundary conditions; they (1o not appear to satisfy the boundary conditions. In their

study of vortex/wave interactions, Smith & Walton (1989) (to not coninient on the initial

conditions they choose.

Returning to Figures 2a,b, we see that these nunerical results are in full agreement

with the theoretical large-X* predictions, (4.4). Thus, in the following subsections, it

is sufficient to merely calculate values of sgn(Kc2,) in order to determine the solution

properties for large-X*; these being of principal interest.

4.2 The incompressible case (M, = 0).

In their study, Hall & Smith (1989) considered 'this' vortex-wave interaction for in-

compressible boundary-layer flow. They cleverly deduced the scales and formulated the

interaction; unfortunately, they made two unrelated errors in their analysis, both of which

have a significant effect on the results and conclusions. The first of these errors concerning

the missing logarithmic term in the interaction scales (most kindly pointed out to the

current author by Dr. P. Blennerhassett and Prof. F.T. Smith), leads to a simpler system

of interaction-equations, as well as leading to changes in the possible large-X states and

the necessary parameter values for them to be possible. The second, the term tb(1 ),A3 zY

missing from the left-hand side of Hall & Smith's (1989) equation (3.91)), was spotted by

the current author and leads to a corrected form for c, and hence, a corrected value for

the crucial quantity C2,.

The interaction coefficients a, b, are as given by Hall & Smith (1989); whilst the

corrected form for c was given by Blackaby (1991) (see also the Appendix A of Smith &

Blennerhassett, 1992). In Figure 3 the new numerical values for the important interaction

quantities, ci and C21 are plotted, versus TS-wave obliqueness angle 0; recall that, for
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incompressible flow, all such wave angles are possible. Note that clr > 0 for all 0; whilst

C2r has one zero, at 0 :- 32.210. Recalling the definition of K,

K=I_-(2/4a2) = 1- ta12() > 0 :if0 <450
< 0 otherwise,

we see that, when Mi, = 0,

{ -1 if 32.210 < 0 < 450
sgn(Kc2r) = + otherwise.

Thus, from this last result and the numerical calculations described in §4.1, we deduce

the following: (i) if 32.21' < 0 < 450 then the solution to the interaction equations will

'blow-up' in a finite-distance; otherwise (ii) the solutions will grow slowly (far slower than

the linear TS-solutions if there were no vortices present), with amplitudes proportional to

algebraic powers of X*, as X* --+cc. Note that these conclusions are quite different from

those of Hall & Smith (who concluded that the 'finite-distance break-up' option was most

likely, apart from the small range 45' < 9 <, 50' where an 'exponential-growth' option

was favoured). Thus, the theoretically-exciting 'finite-distance break-up' option is now

the exception, rather than the rule.

4.3 The subsonic, supersonic and hypersonic cases.

For subsonic (Moo < 1) and some supersonic (1 < M, <- 1.15) flows, the properties

of the interaction-coefficients were remarkably similar to those found for the incompress-

ible case i.e. graphs of Clr, C2r against 0 appear very similar to Figure 3. However, the

TS-wave angle restriction (2.71)) is found to have a far more significant effect for 'more'

supers6nic flows - essentially it can be regarded as preventing wave-angles that would

allow sgn(Kc 2r) < 0, corresponding to the finite-distance break-up option. This is illus-

trated more clearly in Figure 4 where the results are summarised; we see that the 0 -- M,,

plane splits into four regions (labelled I - IV, as shown). Region IV corresponds to the

6barred' area, where no neutral TS-modes are possible. WVe see how the border of this

region acts as an 'abrupt cut-off' to the larger-M, extent of Region II ( finite-distance

break-up option). This is so much so that, for Mach numbers above V/2-, the possibility
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()f tinite- (li-t auict 1 )1e till) hits goi.Thiis -,uiIiiniaristiiitg. 11 Ilt*w uhiiB , (n itthit n

MVt' itlhl(St ito'tical t h tie illc(m)ll-essil le ca.t: whlrcas. ii g. ij'eral, thli finitt. dli-rat lW,.

b)reak hl1 eventuality is umt lt m silAle for sulrsoti" flows, iainiily ,llt t, to the StVrt, ,'rut fl"

restrietion ft , litrget II tyvn Ads tumii 'ers. To ililustrate the last l iat, in Figiit' 5 wc, hay,

lp1 wttt't ve, r.5ts .1 ani.d N for -11, = 3 note (i) thlintt there' i no z/rt, fohr '",. al1 1ii).

the very v lilie wave atigles etnciultered (so thlit K is alway's tiwt'ItiV' a;tl(I. lh'ti. /c,2,

is always positivw).

The last set of results that we present are for hypersotnic flow over a wedge. as cotisid-

ered by Cowley & Hall (1990), in which a shock is fitted into the upper deck (at Y = ,.ý

where y is the nortial- variable of the upper deck), leading to a tnodified forrm of Stimith's

hypersonic TS-eigenrelation (the reader is referred to the paper by Cowley & Hall for all

(letails of the formulation). In Figure 6, we present re.xlts for the first (lowest) neutral

curve for the case V., = 1; here (VCH, fI('n - 0(1) correspond to n,/l in the notation of

that paper. It is sufficient to note that, in our notation,

-- -, M.•- >> 1,
2a aCH

and so the waves they consider are, in general, very oblique. Of particular interest here is

the (small) interval where c2 , > 0, so that Kc2 , < 0, corresponding to the finite-distaice

break-up option; this is an effect of the shock. No such interval is found for the 'higher'

neutral curves; this interval appears to be a feature of the 'lowest' neutral curves only (for

each choice of ,) and corresponds to 'crossing' the 'divide' aCH = riC'H.

Finally, we report that for the 'hypersonic and transonic' limiting cases mentioned in

§3.3, the numerical results and the predicted asymptotic behaviours (for the interaction

coefficients) were in extremely good agreement.

5 CONCLUSIONS

Many of the conclusions of Hall & Smith (1989) carry over to the l)resent study

and so we concentrate on cotnpressibility-related aspects here. In this paper it has

been demonstrated that, within the triple-deck framework (Re >> 1), pairs of small-

amplitude Tollmien-Schlichting waves and longitudinal vortices can interact, leading to
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mutual growth. We have seen that two possible "eventualities', for the downstream evoli-

tion of the interaction, exist; one in which the solutions grow relatively slowly as X , x:

whilst tL, other terminates at a finite-distance in a "break-up'. Further. we have seen that

the latter is no longer possible, in general, for supersonic flows (R( >> I).

The interaction has b)een considered for all ranges of the Mach niunber: corected

results for the incompressible case have been presented and the main effect of compress-

ilbility is through its impact on the TS waves via their governing mechanism, the triple- deck

structure. In the trausonic and hypersonic liniti, g-cases the interaction modulation scale

X must be rescale(l; in the transonic limit this modulation scale shortens, whilst in the

hypersonic limit the opposite is true. The investigation of such vortex/wave interactions in

transonic and hypersomiic flows (not their *limits') should prove interesting-, note that the

former flow has been studied by Bowles (1990), whereas the latter flow regime has been

considered by Blackaby (1991).

Other effects which could be incorporated into the present theory include p)ressure-

gradient effects; wall-cooling effects (see Seddougui. Bowles & Smith, 1991): cylindrical

geometry (see Duck & Hall, 1990) and spanwise-modulation (ef Smith & Walton, 1989).

Finally, we note that Hall & Smith (1991) and Walton & Smith (1992) consider the pro-

porties of 'strongly nonlinear' TS-wave/vortex interactions corresponding to larger wave

amplitudes than those considered in this paper.
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Figure 1. TS wave obliqueness angles 0 versus scaled spanwise wavenumber for neutral

modes.
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Figure 2c.
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Figure 2a. Numerical solution of the interaction equations (4.3) with Kc2r < 0.
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Figure 2b.
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Figure 2b. Numerical solution of the interaction equations (4.3) with Kc2. > 0.
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Figure 3.
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Figure 3. The interaction coefficients, Cl r and C2r, versus TS wave angle 0 for the incom-

pressible case.
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Figure 4.
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Figure 5.
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Figure 5. The wavenumber /3/2 and the interaction coefficient C2r, versus TS wave angle

0, for Moo = 3.
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Figure 6.
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Figure 6. The quantities &CH and C2,, versus riCH, for hypersonic flow over a wedge:

= 1, lowest neutral curve (the lower curve in figure 2a of Cowley & Hall, 1990).
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downstream co-ordinate; i.e. in general, solutions do not terminate in abrupt,
finite-distance 'break-ups'.
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